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A new integrated 
pipeline to probe 
cancer’s inner workings   

The sample is prepared for analysis as 
intact tissue or is disaggregated for 
single-cell analysis. The team has made 
major advances enabling a wide variety 
of samples to be analysed through the 
pipeline, from cultured cells to frozen 
biopsies or formalin-fixed paraffin-
embedded tissues, which have  
historically been difficult to image.  

This map represents the journey of a 
sample through IMAXT’s 3D tumour-
mapping pipeline, progressing through 
multiple levels of analysis on intact tissue, 
as well as single-cell sequencing on 
disaggregated cells. Eventually, all data 
are integrated and mapped onto the same 
3D scaffold, providing a 3D tumour map 
that can be explored in virtual reality. 
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Intact tissue

Hyperplexed 
immunofluorescence imaging 
(HIFI): high-resolution spatial 
proteomics 
A non-destructive, high-dimensional 
variant of cyclic immunofluorescence 
that can image 40 or more markers 
across whole-slide tissue sections.  
“Thanks to discussion with our wider 
team, we’ve overcome a number of 
technical challenges with HIFI, including 
setting up a new analytical pipeline and 
solving how to align and combine all 
images from each round of labelling.”  
– Spencer Watson, postdoctoral fellow  

Serial two-photon tomography: 
spatial proteomics   
By serially sectioning the sample as 15µM 
slices and imaging four fluorescence 
channels simultaneously, STPT provides 
the scaffold upon which all further 
annotations are projected.   

Image: mouse mammary gland 
Credit: Eduardo Gonzales Solares 

Image: mouse  
glioblastoma 
Credit: Joyce lab
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Expansion 
sequencing: spatial 
transcriptomics  
Physical expansion of a 
sample combined with in 
situ RNA sequencing

Image: Mouse hippocampus 
Credit: Alon et al, 2021 

3D imaging mass cytometry: 
ultra-high-resolution spatial 
proteomics  
Simultaneous detection of as many as 
40 antigens and nucleic acid sequences. 
“We’ve overcome a number of technical 
difficulties in translating IMC from 2D to 
3D, including using a diamond knife to cut 
2 µM slices without distorting the tissue.” 
– Laura Kütt, PhD student 

Image: Human breast cancer 
Rendering credit: AGAVE 
(Allen Institute for Cell Science)

MERFISH: spatial  
transcriptomics  
Near-genome-wide, spatially-resolved  
RNA profiling of individual cells, with high 
accuracy and efficiency.  
“We’ve significantly optimised our sample 
procurement and analysis protocols to  
obtain high-quality data and are continuing to 
optimise the technique to expand the repertoire 
of samples we can target with MERFISH.”  
– Leonardo Sepulveda Duran, postdoctoral 
fellow

Credit: Zhuang lab 
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Images selected for this visualisation of the pipeline do not represent the same sample.  

“These methods give us detailed information about 
the expression profiles of individual cells and 
populations, letting us examine tumour evolution and 
chromosome structural aberrations at the single-cell 
level. Combining this with spatial data lets us uncover 
novel cell-cell interactions and underlying biology.

Ciara O’Flanagan 
research associate

Image stitching, 
segmentation 
and re-alignment   
Data gathered throughout the 
pipeline are projected onto the 
anatomical scaffold provided 
by STPT. “One of the technical 
challenges of our pipeline is the 
large volumes of imaging data 
and the variety of instrument measurement modalities.  
To achieve this integration, we’ve taken learnings from 
astronomy, including adopting approaches used for data 
handling and analysis of astronomical surveys.” 
– Eduardo Gonzales Solares, senior research associate 

Image: Beads around the 3D model of a tumour, which are used for image 
registration of sample slices as well as across different modalities 
Credit: Eduardo Gonzales Solares

Output: a detailed, computerised, 3D map of the original sample 
that can be explored in virtual reality

Image: Chromosomal copy 
number profile from scDNAseq 
and UMAP from scRNAseq data

Disaggregated 
cells
Survey sequencing  
and single-cell 
genomics and 
transcriptomics
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